Join our community of SUBSCRIBERS and be part of the conversation.

To subscribe, simply enter your email address on our website or click the subscribe button below. Don't worry, we respect your privacy and won't spam your inbox. Your information is safe with us.

Subscribe

News

Company:

Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Thursday, February 27, 2025

Scientists Made Artificial Body Cells with Amazing Functions

Share

Researchers at the University of North Carolina-Chapel Hill (UNC-Chapel Hill) have taken a groundbreaking step toward closing the gap between synthetic and living materials. A new study published in Nature Chemistry details the creation of artificial body cells that mimic the behavior and functions of natural cells. This innovative technology holds significant advancements in regenerative medicine, drug delivery systems, and diagnostic tools.

How to Create Artificial Body Cells

“This discovery opens doors for engineering advanced materials, such as fabrics or tissues, capable of responding dynamically to their environment,” explains Dr. Ronit Freeman, lead researcher and faculty member in the Applied Physical Sciences Department at UNC College of Arts and Sciences.

Cells, the fundamental units of life, rely on complex structures formed by proteins to perform various tasks. These protein structures, the cytoskeleton, provide essential support and flexibility, allowing cells to maintain their shape and adapt to their surroundings.

Dr. Freeman’s groundbreaking research focuses on creating these functional cytoskeletons without using natural proteins. Her team developed a new technique utilizing programmable peptide-DNA technology. Peptides, the building blocks of proteins, are combined with repurposed genetic material (DNA) to form the artificial cytoskeleton.

“Traditionally, DNA is not found in the cytoskeleton,” explains Dr. Freeman. “Our innovation involves reprogramming DNA sequences to act as a structural component, binding the peptides together. When this programmed material is placed in water, it self-assembles into the desired structures.”

Also! Explaining Brain Cell Connectivity With Simple Hebbian Model

This ability to control DNA programming empowers researchers to design artificial cells with customized functionalities. Furthermore, they can fine-tune the cell’s response to external factors such as stress. While artificial cells may lack the full complexity of natural cells, they offer distinct advantages. Synthetic cells are more predictable and resilient, withstanding harsh environments that would harm living cells.

“Unlike traditional materials designed for longevity,” Dr. Freeman clarifies, “our focus is on creating task-specific materials. These cells can perform a designated function and then adapt by modifying themselves for a new purpose.”

The customizability of these artificial cells is another crucial aspect. Scientists can program cells embedded within materials like fabrics or tissues by incorporating various peptide and DNA designs. These materials have the potential to smoothly integrate with other synthetic cell technologies, paving the way for transformative applications in biotechnology and medicine.

Understanding Life Through its Synthetic Mimics

“This research not only deepens our understanding of the essence of life,” concludes Dr. Freeman, “but also opens doors to creating materials that surpass the capabilities of natural biology.” The development of artificial body cells with life-like functions represents a significant leap forward in scientific research. This innovative technology offers exciting possibilities for the future of medicine, biotechnology, and our understanding of life itself.

Read more

Local News